ARB's Study of Emissions from "Late-model" Diesel and CNG Heavy-duty Transit Buses: Toxic Compounds and PM Emissions

Alberto Ayala, Norman Kado, Robert Okamoto, and Paul Rieger

Technical Collaborators:

Dr. B. Holmen (*UCD*), Dr. L. Zafonte, Dr. M. Gebel, H. Porter (*CAVTC*), K. Stiglitz (*CAVTC*), F. Gonzalez (*CAVTC*), P. Kuzmicky (*UCD*), Reiko Kobayashi (*UCD*), K. Sahay, G. Gatt, N. Yerma, C. Maddox, Dr. B. Dharmawardhana, Dr. S. Paulson (*UCLA*)

Briefing # 2 Content

RESULTS:

- Speciation of Gas-Phase Hydrocarbons
- Carbonyl Compounds
- Organic and Elemental Carbon and Elemental Composition of PM
- Phase distribution of PAH's
- Mutagenicity: Ames Bioassay Analysis
- Emission Factors Summary Table

Project Update

- Majority of results already in ...
- Remaining PAH results expected early '02
- Remaining bioassay results expected early '02
- ELPI results expected Dec '01

Test Fleet

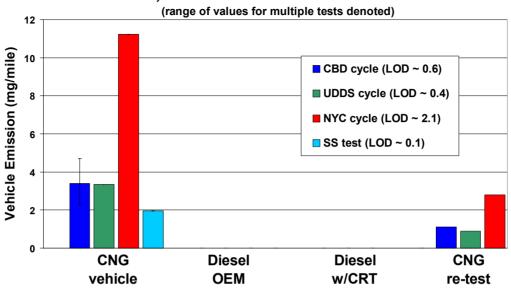
	<u>"CNG"</u> "CNG re-test"	"Diesel (OEM)"	<u>"CRT"</u>
Model	2000 DDC Series 50G	1998 DDC Series 50	1998 DDC Series 50
Aftertreatment	None	OEM Catalyzed Muffler	CRT™
Fuel	CNG	ECD-1	ECD-1
Odometer	19,629	15,169	15,569
Weight	33,150 lbs	30,510	30,510

- Los Angeles County Metropolitan Transit Authority fleet
- 8.5 liter, 4-stroke, turbocharged, 4-cylinder, New Flyer Low 40 passenger transit buses

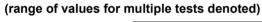

Toxic Gas-Phase HC's - Sampling Methodology

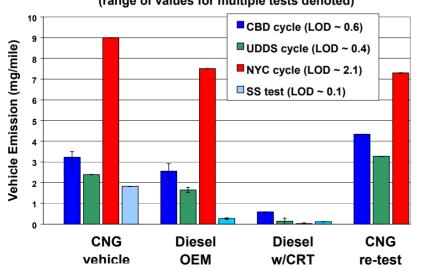
Target Analytes

- 1,3-Butadiene Benzene
- Toluene Ethylbenzene
- m,p-xylene o-xylene
- Styrene

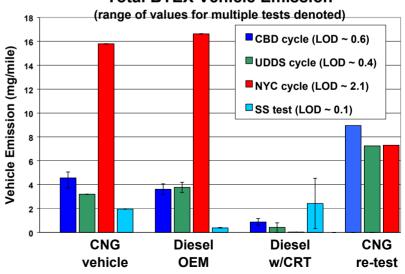

Tedlar Bag Collection

On-site GC-FID's





1.3-Butadiene Vehicle Emission



Benzene Vehicle Emission

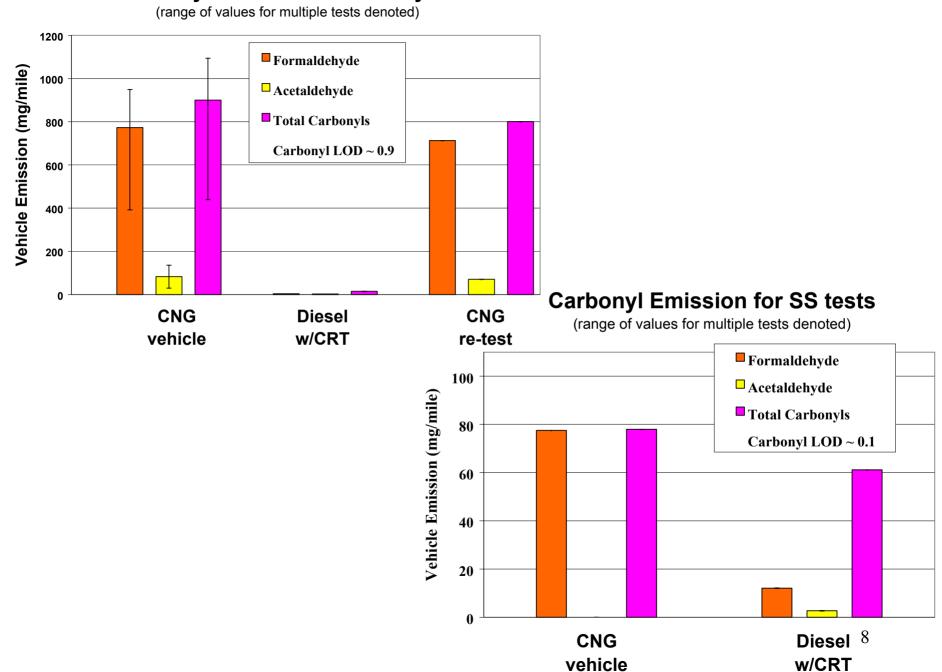
Total BTEX Vehicle Emission

Carbonyl Compounds

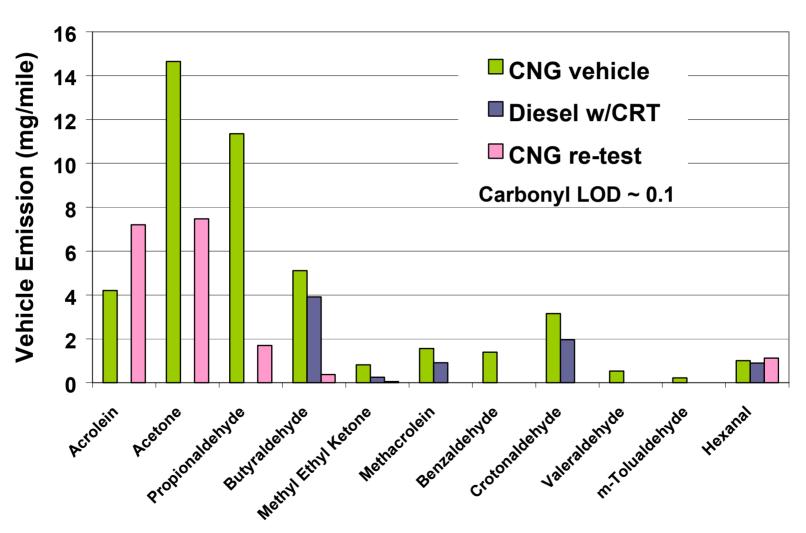
Sampling Methodology and Analysis

- Collection on DNPH cartridges
- High-precision Liquid Chromatography Analysis

Target Analytes


- Formaldehyde
- Acetone
- Propionaldehyde
- Methyl ethyl ketone
- Butyaldehyde
- Valeraldehyde
- Hexanal

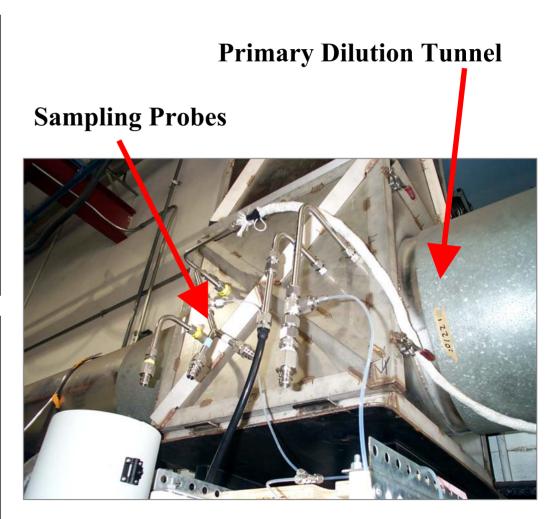
- Acetaldehyde
- Acrolein
- Crotonaldehyde
- Methacrolein
- Benzaldehyde
- M-tolualdehyde



Aldehydes Bench

Carbonyl Emission for CBD Cycle

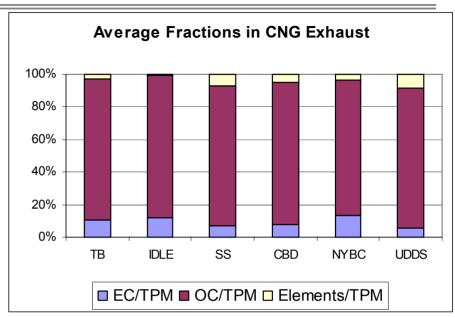
Additional Carbonyls for CBD Cycle

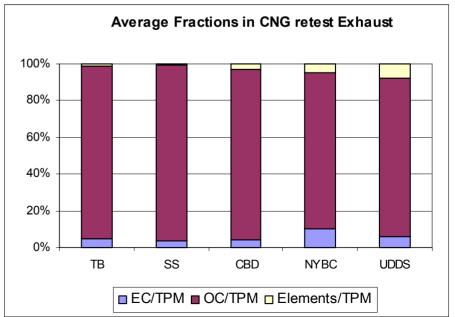

EC/OC and Elemental Analysis

EC/OC Procedure

- Quartz-Filter
 Collection of PM
- DRI/IMPROVE Optical/Thermal Analysis

Elemental Analysis

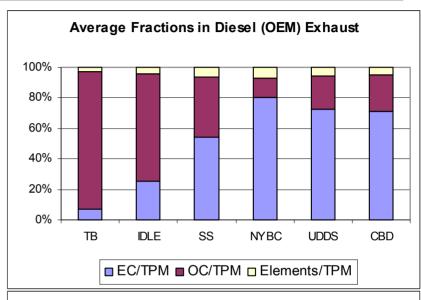

- Teflon-Filter
 Collection of PM
- X-ray Fluorescence

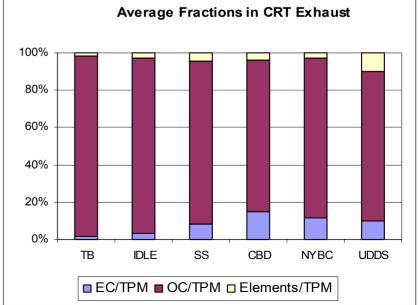


Average Composition of PM

- OC dominates CNG
 PM composition
 across all cycles
- Similar tunnel blank composition

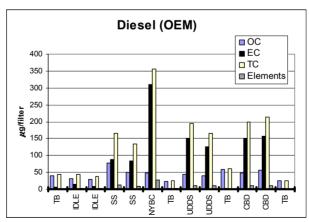
NOTE: TPM=Total PM= EC+OC+Elements

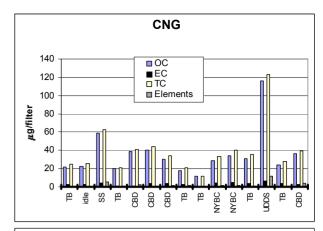


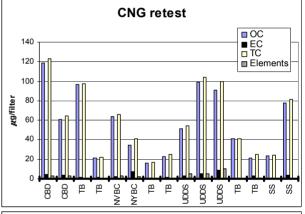


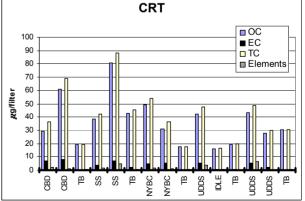
Average Composition of PM (cont'd)

- EC/OC fraction in Diesel (OEM) PM shows strong cycle dependence
- OC dominates CRT PM composition across all cycles

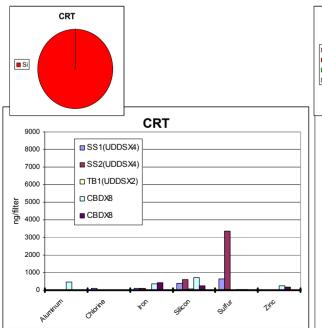

NOTE: TPM=Total PM= EC+OC+Elements

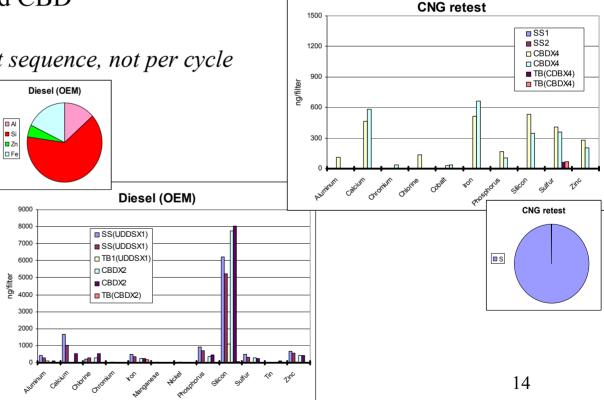





EC/OC/Elements-Total Emissions

- EC/OC/Elements fractions show cycle dependence and variability
- In general, emissions:
 Diesel (OEM) > CNG > CRT
 TB ~ Idle < other cycles




13

Elemental Analysis Results

- Ca, Cl, P, Zn, S are oil components
- Fe from engine wear
- Si source unknown
- Si emissions: Diesel (OEM) >> CNG ~ CRT
- In general, TB << SS and CBD

NOTE: Cumulative results per test sequence, not per cycle

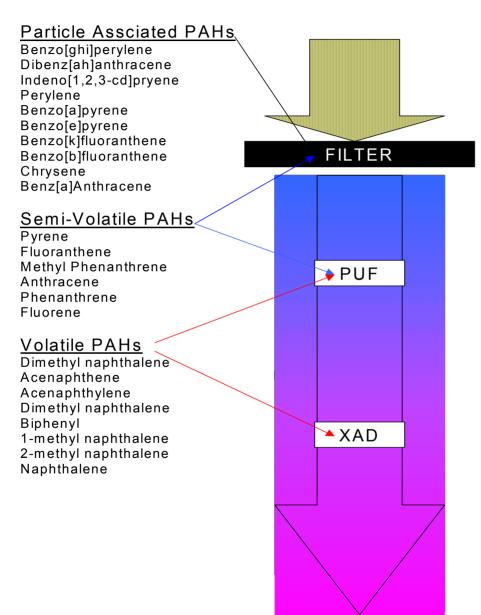
Tunnel Blank

CNG

■ TB3(UDDSX2)

■ SS(UDDSX2)
□ CBDX2
□ CBDX2

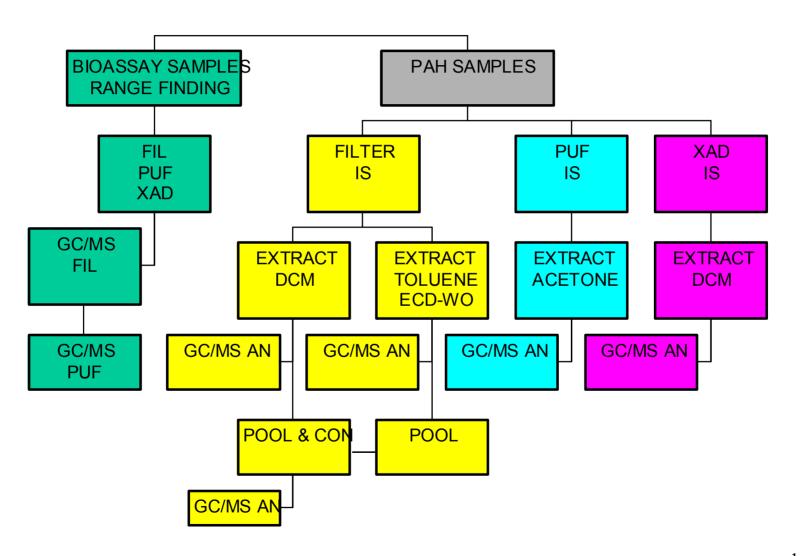
■ CDBX2 ■ CBDX4 □ TB1(CBDX2)

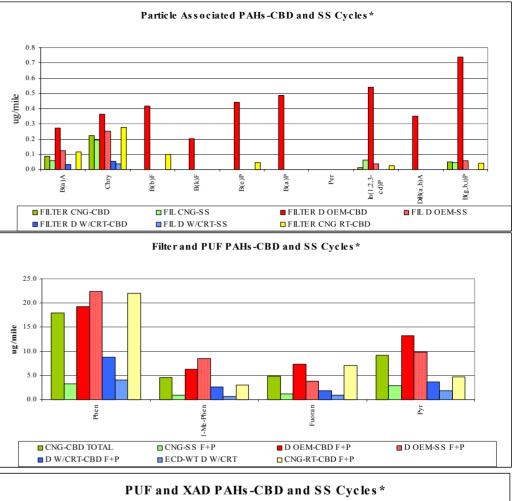

■ TB2(CBDX2)

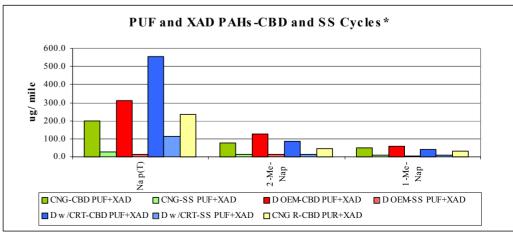
■ Ca □ Cu □ Fe

■ AI

Polycyclic Aromatic Hydrocarbons


TARGET PAHS


Particle Associated	OEHHA Unit risk for	
PAH's	cancer by inhalation	
	per million	
	(ug/m3)E-1	
Benz[a]anthracene		
Chrysene	11	
Benzo[b]fluoranthene	110	
Benzo[k]fluoranthene	110	
Benzo[a]pyrene	1100	
Dibenz[ah]anthracene	1200	


Expected PAH phase distribution in ambient and CARB diesel exhaust samples

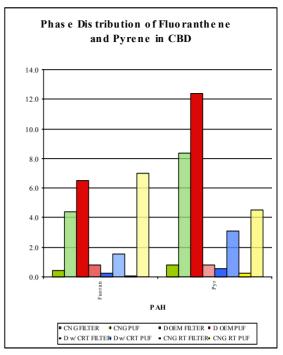
PAH ANALYSIS

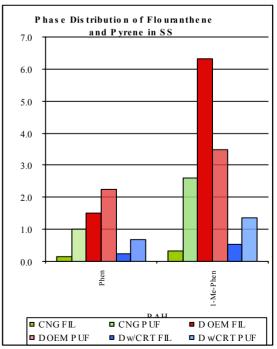
*All results not corrected for tunnel blanks and XAD values corrected for background contamination

CBD and SS Results PAHs in PM

- -Diesel (OEM)-Most PAHs Detected
- –CNG CBD Most PAHs m.w. 252 Not Detected except for BaP
- -CNG SS- All PAHs m.w. 252 Not Detected
- –CRT- CBD and SS Only Benz[a]anthrancene and Chrysene Detected

CBD and SS Semi-volatile PAHs

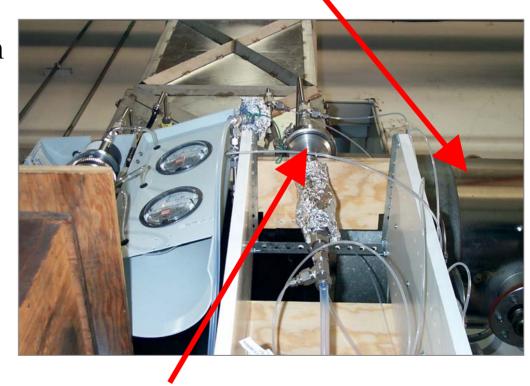

- –Diesel (OEM) Generally the Highest Levels
- -CNG Similar Levels to Diesel OEM
- -CRT Lowest Levels


CBD and SS Volatile PAHs

-At Similar Levels

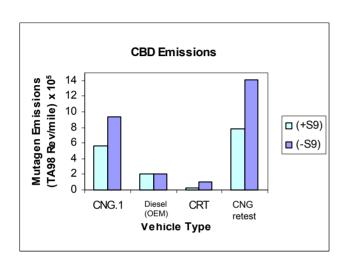
•Fluoranthene and Pyrene Phase Distribution

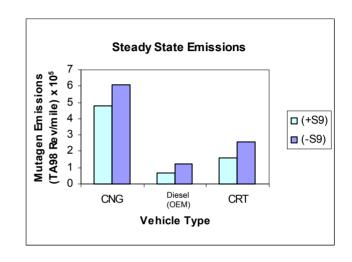
- -CBD Diesel(OEM)-Primarily in Filter
- –SS Distributed more evenly between the Filter and PUF
- –CRT and CNG-Primarily in PUF

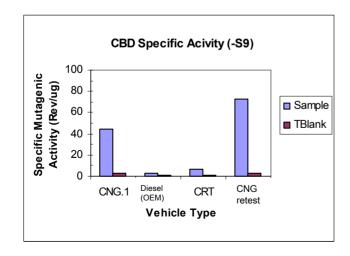


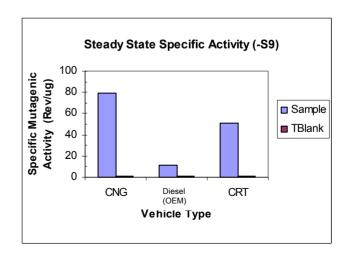
Bioassay Analysis

Procedure


- Collection of PM on Filter
- Collection of vapor-phase on PUF
- Solvent Extraction
- •Salmonella/Microsuspension procedure
- TA98 and TA 100 Tester Strains with and w/o +S9 Metabolic Enzymes


CVS Tunnel




2-stage Sampler

Mutagenicity Results

Emission Factor Summary

CBD					
	CNG	CRT	Diesel(OEM)	OEHHA Unit risk for	
	emission	emission	emission	cancer by inhalation	
	rate	rate	rate	per million	
	mg/mi	mg/mi	mg/mi	(ug/m3)E-1	
Total PM	40.0	14.0	119.0	300*	
Butadiene	3.5	0.0	0.0	170	
Benzene	3.2	0.6	1.6	29	
Formaldehyde	780.0	0.0	**	6	
Acetaldehyde	90.0	0.0	**	2.7	
Total PAH's	0.58	0.78	0.80		
heavy	0.0004	0.0001	0.0038		
semi-vol	0.04	0.02	0.05		
volatile	0.54	0.77	0.75		
B[a]a	9.0E-05	4.0E-05	2.7E-04	110	
Chr	2.3E-04	5.0E-05	3.7E-04	11	
B[b]f	0	0	4.1E-04	110	
B[k]f	0	0	2.0E-04	110	
B[a]p	***	***	4.5E-04	1100	
Dib[ah]a	0	0	3.5E-04	1200	
Spec.Mut. Activity**** ((TA98 Rev/mi)X10E5)	9.6/6	1/2.5	2/1.2		

^{*} For diesel total PM only from ARB TAC document

^{**} Data not available

^{***} Emission factor under development

^{****}CBD/Steady State

Challenges

Test Low-emission Technologies: CNG and CRT

Current methodologies needed improvement or required modification

Emissions Testing

- Large Test Matrix
- Extremely low levels of PM requiring large number of samples to be collected
- Interferences from the Tunnel Background

Analytical

Low levels of PM and gaseous emissions require lower detection limits

Logistics

- Short Turn-Around Time
- Limited Resources

Meeting the Challenge

- Developed ARB in-house Expertise
- Modified existing sample collection and analysis methods:
 - For PAH's, 1) concentrated samples, 2) required different solvent to extract samples, and 3) developed a faster method to extract XAD
- Required Pooling of Samples to Obtain sufficient Sample for analysis

What Was Learned From This Study?

• Not Routine...Research Effort

Tunnel Background Interferences

 To evaluate accurately low-emission technologies will require new sampling methodologies including different types of dilution tunnels to address tunnel background interferences

Changes to Sampling Methodology

- Need samplers that can collect greater PM mass
- Apply what was learned from this study to improve on future studies

Analytical Techniques

- Methodology for particle number/size characterization is needed
- For PAH's, may need to develop additional clean-up procedures to eliminate interferences
- For PAH's, automate sample preparation
- Develop techniques that lower the Method Detection Limit

Final Remarks

Toxic Hydrocarbons and Carbonyl Compounds

- Butadiene was only detected in CNG vehicle exhaust (with 1 exception: Diesel without trap idle test).
- Generally, BTEX concentrations in CVS exhaust samples were close to ambient levels
- Generally, BTEX emission follows the order: CNG > Diesel (OEM) > CRT
- Carbonyl emissions from CNG vehicle were much higher than from CRT-equipped vehicle
- Total carbonyl emissions (by mass) from CNG vehicles are two orders of magnitude higher than BTEX and 1,3 Butadiene emissions
- CNG vehicle carbonyl emissions are dominated (>80%) by formaldehyde

Final Remarks (cont'd)

Composition of PM

- OC dominates CNG PM composition across all cycles
- Similar tunnel blank composition
- EC/OC fraction in Diesel (EOM) PM shows strong cycle dependence
- OC dominates CRT PM composition across all cycles
- EC/OC/Elements fractions show cycle dependence and variability
- Emission of EC/OC/Elements: Diesel (OEM) > CNG > CRT
- Ca, Cl, P, Zn, S are oil components
- Fe from engine wear
- Si source unknown
- Si emissions: Diesel (OEM) >> CNG ~ CRT

Final Remarks (cont'd)

PAH's and Bioassay

- Emission rates (ug/mi) for most PAH's were higher in the CBD than SS
- Emission rates for CNG retest were generally higher than CNG
- Differences were observed in the properties of PM from CNG, Diesel (OEM), and CRT
- New substrate is needed to replace XAD because of backgrounds of some PAH's approach the low PAH levels in tunnel blank and samples
- CRT PAH levels are similar levels to TB's
- Generally, CNG and Diesel (OEM) are higher than TB's
- Emissions of mutagenic compounds showed cycle dependence
- For CBD, bioassay follows: CNG > Diesel (OEM) > CRT
- For SS, bioassay follows: CNG > CRT > Diesel (OEM)

"Bottom Line" and Next Step

• Thus far, the cumulative results in this study suggest that the "adverse" impact from emissions follows:

Total PM Mass: Diesel(OEM)>CNG>CRT

Secondary PM: CRT>Diesel (OEM)> CNG

Particle Size/Counts: CNG>Diesel(OEM)>CRT

Toxicity/Mutagenicity: CNG>CRT~Diesel(OEM)

- Results show cycle dependence
- PM is not PM and is not PM!

What is next?

- SCAQMD Briefing
- Finish data analysis and subject it to peer review
- Report back once publications accepted

IDEAS FOR FOLLOW-UP STUDY:

Investigation of Toxics from Interim and "2007" Heavy-Duty Emission Controls

Scope Cuts Across Applications:

- Baseline
- CRT and SCRT on bus or truck (*in-house*)
- DPX and DPX/EGR on bus or truck (*in-house*)
- SCR/DPF engine tests (piggy back on current work: DOE or EPA)
- NO_x Adsorber/DPF <u>engine</u> tests (*piggy back on current work: DOE or EPA*)
- CNG/Catalyst, "Advanced" CNG, CNG/H₂, or CNG/Trap?? bus (*in-house*)
- Other? (*i.e.*, fuel-borne cat, active PM trap)

Approach:

• Duplicate samples, one fuel, one oil, one or two duty cycles

FOLLOW-UP STUDY (cont'd)

Emissions of Concern:

- DPF Ash
- Regulated Emissions
- Elements
- Toxic VOC's and Carbonyls
- PAH's and Nitro-PAH's
- Bioassay Analysis
- Characterization of Particle Number and Size
- Dioxins
- Other? (HONO, N₂O, etc.)

Participants:

- Lead Team: RD, SSD, MSCD
- In-house Testing: RD, MSCD
- Analysis: UCD, MLD, NREL, EPA, Private Lab
- Data Reduction: RD, SSD, MSCD